Бензол и его производные

    Содержание главы: 
  1. Бензол и его производные. Строение бензола.
  2. Ароматичность. Правило Хюккеля. Небензоидные ароматические соединения.
  3. Номенклатура производных бензола. Конденсированные арены. Ароматические радикалы.
  4. Получение производных бензола.
  5. Химические свойства аренов. Реакции электрофильного замещения. Правила ориентации электрофильного замещения.
  6. Примеры реакций электрофильного замещения: галогенирование, нитрование, сульфирование, алкилирование, ацилирование.
  7. Реакции боковых цепей аренов. Реакции присоединения к ароматическому кольцу.

Известно, что гибридное состояние атома углерода в молекуле в большой степени определяет химическое поведение соединения. Так, алканы, образованные sp3-гибридными атомами углерода, инертны по отношению к большинству реагентов. Производные этилена имеют склонность к присоединению электрофильных реагентов и свободных радикалов, что приводит к разрушению π-связи и образованию более устойчивых σ-связей. В то же время, некоторые соединения с двойными связями способны к присоединению и нуклеофильных реагентов. Это в первую очередь относится к двойной связи α,β-непредельных альдегидов и кетонов, нитрилов, β-нитростиролов, т.е. тех соединений, в которых π-связь сопряжена с электроноакцепторной группой. Ацетилены могут присоединять как электрофильные, так и нуклеофильные реагенты. Это связано с тем, что в их молекулах одновременно присутствуют как доступные электроны π-связи, так и электроотрицательные атомы углерода.

Ранее было показано, что химические свойства пространственно ненапряженных циклоалканов почти не отличаются от свойств этана, пропана и т.д. Аналогично, довольно близкую реакционную способность имеют бутадиен и циклогексадиен. Однако, поведение циклических соединений, скелет которых образован исключительно sp2-гибридными атомами, зачастую принципиально отличается от свойств их линейных аналогов. Примером соединений такого типа является бензол, а также его гомологи и производные.

Своеобразие свойств этих соединений заставило выделить их в отдельный класс ароматических соединений. Происхождение этого названия связано с тем, что многие из представителей ряда имеют специфический, зачастую приятный, аромат.

Строение бензола

Бензол был открыт английским естествоиспытателем М. Фарадеем в 1825 году. Ему была приписана правильная формула С6Н6, однако истинное строение молекулы в течение долгого времени оставалось загадкой. Лишь в 1865 году немецкий химик Август Кекуле предложил циклическую формулу, которая представляет молекулу бензола в виде плоского шестигранника, в котором атомы углерода связаны между собой тремя одинарными и тремя двойными связями и каждый из них имеет связь с атомом водорода.

Этой формулой мы пользуемся и сейчас, хотя вкладываем в нее несколько иное содержание.

Вот что написал сам Кекуле об установлении формулы бензола:

"Я сидел и писал учебник, но работа продвигалась плохо, мои мысли блуждали где-то далеко. Я подвинул кресло к камину и задремал. Снова атомы запрыгали перед моими глазами. На этот раз малые группы атомов скромно оставались на заднем плане. Мой мысленный взор, обостренный повторением таких видений, мог теперь различать структуры большего размера в многочисленных конформациях, длинные цепи иногда тесно группировались, все они изгибались и поворачивались подобно змеям. Но что это? Одна из змей захватила свой собственный хвост, и эта фигура завертелась перед моими глазами, как бы посмеиваясь надо мной. Как от вспышки молнии я пробудился... Остаток ночи я провел, обдумывая следствие из моей гипотезы. Научимся мечтать и тогда, может быть, мы постигнем истину" (1865).

Однако формула Кекуле не согласовывалась с данными экспериментов. Было обнаружено, например, что можно получить лишь три изомерных дизамещенных бензола. Так, при мононитровании толуола образуется смесь лишь трех соединений: орто-, мета- и пара-нитротолуолы.

Если бы двойные и одинарные связи в бензоле можно было различить, то изомеров было бы пять:

Поэтому Кекуле предложил считать, что кратные связи в молекуле бензола быстро перемещаются (осциллируют). Это утверждение подразумевает свободное перемещение π-электронов в цикле.

Отметим, что для объяснения строения бензола с учетом элементного состава ошибочно предлагались и другие формулы, например:

Среди этих предполагаемых структур лишь призман (бензол Ладенбурга) имеет шесть эквивалентных атомов углерода, что могло бы объяснить химическое поведение бензола. Позднее, в 20-м веке, некоторые представители указанных систем (включая призман) были получены, однако оказались весьма неустойчивыми соединениями.

Атомы углерода в бензоле имеют sp2-гибридизацию, чему соответствует валентный угол 120о. Таким образом, геометрия молекулы бензола не приводит к напряжению, связанному с искажением валентных углов. Каждый С-атом образует три σ-связи и (формально) одну π-связь, для образования которой предоставляет один р-электрон. Известно, что электронные орбитали π-связей имеют способность к сопряжению. В молекуле бензола сопряжение кратных связей максимально, следствием чего является эквивалентность всех шести атомов углерода. Связывающие π-электроны в равной мере принадлежат всем шести атомам, другими словами, последние вносят по одному электрону в общую циклическую π-систему. Это явление называется делокализацией π-электронов. Длины и порядки всех шести С-С связей равны, т.е. их нельзя различить на одинарные и двойные, поэтому дипольный момент бензола равен нулю. В молекуле бензола атомы углерода образуют плоский правильный равносторонний шестиугольник с осью симметрии шестого порядка. На продолжении радиусов, проходящих через С-атомы, располагаются атомы водорода.

 

Распределение спиновой плотности в молекуле бензола можно представить как резонансный гибрид нескольких граничных структур:

Теплота образования бензола из атомов больше суммарной энергии образования трех молекул этилена на 160 кДж/моль. Близкая величина получена также из расчетов теплот гидрирования. Так, теплота гидрирования бензола равна 206 кДж/моль, а для циклогексена эта величина составляет 119 кДж/моль. Разница составляет 3 · 119 - 206 = 151 кДж/моль. Эту разницу называют энергией π-электронной делокализации или энергией резонанса и она показывает выигрыш энергии за счет делокализации π-электронов во всей замкнутой системе.

Энергия делокализации (резонанса) ER=151кДж/моль показывает, насколько ароматические молекулы устойчивее аналогичных структур с локализованными π-связями. Поэтому энергия резонанса может служить необходимым и достаточным условием ароматичности и ее количественным термодинамическим критерием.

В свете сказанного молекулу бензола следует изображать в виде шестиугольника с кольцом внутри, но для удобства пользуются формулой Кекуле с двойными и одинарными связями, подразумевая при этом, что все связи выровнены.

 

В начало страницы

Предыдущая глава

Следующая глава

Упражнения к теме "Арены"

Тесты для самопроверки